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SUMMARY

In this final report covering the beriod 1993-1994, the preliminary results of the
research on direct numerical simulation of compressible turbulent flows are presented.
Specifically, the adaptive Legendre polynomial spectral element method with the mixed
explicit-implicit(MEI) Taylor-Galerkin formulation is used in order to capture detailed
physics involved in three-dimensional shock wave turbulent boundary layer interactions.

The main activity for the second year was concerned with construction of three-
dimensional data structure of the computer program. The material covered in this final
report consists of (1) variations of fluctuation velocity components, Reynolds stress
contours, and turbulent kinetic energy variations, corresponding to the two-dimensional
shock wave turbulent boundary layer interactions examined in the first year progress
report and (2) the preliminary results of the three-dimensional flow including the vorticity
distributions. Studies on three-dimensional turbulent statistics such as power spectral
densities vs wave numbers (or frequencies), spectral energy transfer and cascade, the
effects of production and dissipation, inertial subrange, etc. are currently in progress and
will be included in the next progress report.

In conclusion, the proposed direct numerical simulation of compressible turbulent
flows using the adaptive Legendre polynomial spectral element with the MEI Taylor-
Galerkin formulation has been shown to be robust, accurate, and efficient. Further
research is required, however, to demonstrate its ultimate impact on CFD through

exhaustive examples and comparisons with available experimental data in the future.
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I. INTRODUCTION

The last decade has seen unprecedented technological
innovations in computational fluid dynamics, prompted partic-
ularly by the increase in technical requirements of éerospace
research. Namely, the flowfields due to high velocities,
compressibility, shock waves, turbulence, and high temperature
have been the focus of intensive research in the past [1-9].

When shock waves interact with turbulent boundary layers in
external or internal flows special considerations are required
due to widely disparate time and length scales, corresponding to
different physical phenomena - namely, turbulence microscales and
shock wave surface discontinuities. Here we are faced with the
smallest time and length scales which may severely affect the
computational requirements. To cope with such requirements
various numerical strategies have been deVeloped using finite
difference methods (FDM) and finite element methods (FEM).
Incorporated or implemented into either FDM or FEM are the finite
volume methods (FVM) and spectral element methods (SEM).
Modeling of turbulence has been the controversial subject.
Closure models, probability density functions (PDF), large eddy
simulation (LES), direct numerical simulation (DNS), and other
methods have been reported.

The purpose of the present study is to demonstrate the
superiority of DNS combined with unstructured adaptive spectral
element methods in dealing with combined turbulence and shock

waves for both internal and external flows of aerospace vehicles.




This work is motivated by the fact that DNS can be achieved via
adaptive h-p methods, combining the mesh refinement (h-method)
with spectral polynomial degrees of freedom (p-method). It is
well known that the most crucial aspect of turbulent flows is
microscales involved in boundary layers (viscous sublayer, buffer
zone, and turbulent core). This is where the spectral polynomial
degrees of freedom can be increaséa as desired since the mesh
refinement alone is incapable of resolving the microscale
requirements. In this way, turbulence modeling techniques can be
avoided. Furthermore, the current practice in DNS to use
extensive refinements in finite difference discretization may
also be avoided. Babuska and his co-workefs [10-12] and Oden and
his co-workers [13-15] contributed to the advancement of FEM h-p
adaptive methods. Their applications have not been extended to
shock waves interacting with turbulent boundary layers.

Chung, et al. [16-19] have studied finite element strategies
as applied to shock wave turbulent boundary layer interactions in
reacting flows and explored applications of direct numerical
simulation in characterizing the shock wave turbulent boundary
layer interaction. The main emphasis in the present study is to
establish the basic theory and computational strategies involved
in the Legendre polynomial spectral element method and to present
preliminary computational results. Development of theory and
formulations include irregular node connectivity of Legendre
polynomials of various orders. Comparisons with experimental re-

sults have demonstrated superiority of the direct numerical simu-
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lation over the standard K-e¢ model with compressibility effects.
In what follows we discuss the governing equations and

solutions of Navier-Stokes system of equations via mixed
explicit-implicit (MEI) Taylor-Galerkin methods in Section 2,
direct numerical simulation with h-p adaptive methods in Section
3, calculations of DNS perturbation variables in Section 4,
calcglations of flowfield-dependent implicitness parameters and
stability analysis in Section 5, numerical applications in
Section 6, and conclusions in Section 7.

II. GOVERNING EQUATIONS AND SOLUTIONS OF NAVIER-STOKES
SYSTEM OF EQUATIONS

A convenient form of governing equations for compressible
viscous flows may be written in terms of conservation variables

as follows:
oo oF, N oG,

—_— t — = B 1
ot  9dx;  Ox; (1)
where
o] PV, 0 0
U=|pVy; F, = |pV;Vv; +Dd,; G, = ~Tij B=| PF;
E pPEV; + DV, =TV + pPF;v;

with standard definitions given by

= 2
Tys = BV 3+ vy ;- §Vk,k5ij

E=e+‘;“’j"gr e=c,T-p/p, q=-kT;
T.+S,( TY/? C.p
=p—=—-0l=| , s =110k, k=-E
W Zwso(n) 0 Pr
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The solution of governing equations will be carried out using the
Taylor-Galerkin approach with test and trial functions given by
isoparametric and Legendre polynomials by means of mixed
.explicit/implicit schemes. In general, explicit schemes are
inexpensive but less accurate in comparison with implicit schemes
for regions of high pressure or velocity gradients. 1In case of
rapid variations of gradients throughout the domain it is often
desirable to devise a scheme in which implicitness can be
adjustable in accordance with gradients, more implicit for the
region of high gradients and less implicit or fully explicit for
the region of low gradients.

In expanding U™' in Taylor series about U", we introduce the
implicitness parameters s, and s, for the first and second

derivatives of U with respect to time [17-19], respectively,

#Sl 052
gmi = o 4 A 90", ALE FUTT L o(AtY)

ot 2 ot?
with
oo™ _ ag= dAD= 1a
T "Sim g ¢ 0ssis1 (3a)
Fgrh _ Fo* eaf:Y il
Fremtiliarve v S 0<s,<1 (3b)

Substituting (3) into (2) yields

o= aAaM) . At3( @os azAuM) . O(ALY) (4)

41 .
ar At( ac " 1T ae 2 \acz 7 at?

It follows from (1) that




S ,—= - 2 4+ B (5)

Here F; is a function of U and G; is a function of U and its
gradient U*, so that we denote the convective Jacobian a,,

dissipative Jacobian b,, and dissipative gradient Jacobian c;, as

3, da,
EL

& = —=— by = —, Cyx =

The second derivative of U with respect to time may now be

written in terms of these Jacobians.

3z M ax,\ax, Ox4 ~B|+by ax,\axj ax, ~B|*Cs ¥ 0x 0%, | axj dxy -B (6)

Substituting (5) and (6) into (4) yields

a 1 +1
AD™ = Agl- ary o6 T dAF;" 3AGY +ABS
ox; dx, ox, ox,
At? 3 (a’.‘f aaf_ al, OB® 3 (aA’;d aAG;"'_ B+l 3 (7)
=5 { (a;+b,) x| ax, o, Bol+ |+ (ay+by) o\ o, + o, AB +0(At?)

In order to provide different implicitness (different amount
of damping or dissipation) to different physical quantities, we

reassign s; and s, associated with G;, respectively
s,AG, - s,AG, , 5,AG; - s,AG, (8a,b)

with the various implicitness parameters defined as

s, = first order convective implicitness parameter

s, = second order convective implicitness parameter (8¢)
s, = first order dissipative implicitness parameter

s, = second order dissipative implicitness parameter

These implicitness parameters play a significant role with




s, and s, controlling shock discontinuity resolutions and s; and
s, dictating turbulent eddy microscale resolutions. The
implicitness parameters are considered to be dependent not only
on time but also on space. In particular, s, and s, are
associated with Mach number changes, whereas s; and s, depend on
Reynolds number changes between time steps and between upstream
and downstream locations. Further details of these implicitness
parameters are given in Section 5.

Neglecting the third order spatial derivatives of
conservation variables associated with ¢; in (7) and

substituting (8a, b) into (7) lead to the residual,

+1 +. 25
R=AU™ + s5,A t:(a, a%g: - AB““) + szAt:(b, a’%g: . c_,,——a;ﬁjg;;)

At?

FAap™r _ _ Ae? FADeL aFy  d@r _ _,
(8585 + bedy) o e~ Se—p | (asby + Beby) W} * At( ax, ok, ©

—ATH{“#":) ? BBI} +0(At?) =0 (9)

dat

a (arf . 86',’ _p®
dx,\ 9xy ox

where all Jacobians a;, b; and c,;; are assumed to remain constant
spatially within each time step and to be updated at subsequent
time steps.

The Galerkin integral of (9) may now be carried out as

follows:

f(D“R(U, F,, G)dQ =0 (10)
Q




where ¢, refers to the spectral test functions, and the
conservation variables are interpolated by the spectral trial

functions ¢, given by the combination of isoparametric functions

and Legendre polynomials as
Uix, t) =@ ()T, (£), Fyx,t) =@ ()F (L), Gi(x,t) = @ (x)G, (L) (11)

Substituting (11) into (9) and (10) yields

(Aepdzs + Buprs)AUps' = Har + Ngz' + N, (12)

ar

Ay = L@,«p,dn.

Buﬂrs = f {At[_slairSQc,iop - 5 (birs(bu,i@p + cijrswa,iﬁﬂ,j) ]
[

+

At?
2

[sz (ai:qajsq + bizqajsq) + 8, (aixqusq + birq‘bjsq) ] ¢¢.i¢ﬂ,.1} dQ

2
Hji = f {At[d’.,id’p (Fgir + Gpiz) + ©,PgBgz] - A2t (aiza + byry) [(®g, 1Py, 5 (Fiys + Goya)
)

- 0.9, B - —AEEQ,Q,AB,,’L} dn

+1 T * + * + * + 2
i '[{;t (-5,8,,,P.AU; lni - 8, (b;, 0 ,AU; 1’11 +CiyrsPald sljlni)] M Azt [5;(85:q354q

* *
+ birqd;jsq) Q,AU‘;,’;ni + 5, (a;,0bigq + Pirgbisg) °aAU:-’;ni]}dP
At?

* *
N, = -1: [At®, (Fir + Gi)ny - =5 (A1rs * bire) ®u(Ffa.s * Gfo.s) B L

Here N™! terms on RHS of (12) are assembled into boundary nodes

of B, on LHS. Notice also that indices i, j, k=1, 2
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associated with the Jacobians imply directional identification of
each Jacobian matrix (a,, a,, by, by, €4, Ci2sr Cpr C2) with r,s =
1, 2, 3, 4 denoting entries of each of the 4x4 Jacobian matrices.
It should be warned, however, that these Jacobian matrices must
be multipiied precisely as dictated by summing through repeated
indices, not through matrix multiplications as a whole.

It is interesting to note that all implicitness parameters
can be shown to be functions of flowfields between upstream and
downstream, and that the convection implicitness parameters s,

and s, associated with the first term in B are analogous to

ars
the total variation diminishing (TVD) limiter in the FDM
literature (see Appendix A). With an adequate choice of these
implicitness parameters, acceptable resolutions of shock waves
have been verified.

On the other hand, the diffusion implicitness parameters s,
and s, are capable of alleviating and accommodating the stiffness
involved in turbulent diffusion or finite rate chemistry (if
reacting). No analogy can be shown since they do not exist in
other numerical schemes. It should also be noted that
interactions between convection and diffusion are achieved by
means of the terms associated with the products Qg bjsq and birq
a;5q+ These terms are particularly important for shock wave
turbulent boundary layer interactions where the effect of
convection upon diffusion and vice versa is crucial in order to

resolve turbulence microscales as disturbed by shock wave

interactions. We shall refer to these terms as convection-
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diffﬁsion interaction terms.

For low Mach number flows density variations become
insignificant. In this case the flow is essentially
incompressible and checkerboard type pressure oscillations occur
unless a éuitable computational scheme is devised to ensure the
mass conservation. In the present study the implicitness
parameters as calculated from the flowfield are expected to
accommodate the conservation of mass and prevent pressure
oscillations. In this vein, the effect of compressibility will

also be automatically accommodated for high Mach number flows.

III. DNS VIA UNSTRUCTURED h-p ADAPTIVE METHODS
our objective here is to resolve time and length scales

involved in turbulence interacting with shock waves using the
unstructured h-p adaptive spectral element methods. One approach
is to refine the mesh (h-methods) until further refinement is
unproductive, at which time the spectral degrees of freedom (p-
methods) are increased in order to reduce errors as desired, such
as in the region of turbulent viscous sublayer. However, the
more desirable approach is to optimize between the mesh
refinement and spectral orders. Thus, the most crucial aspect of
the h-p methods is to determine the best possible change in the
mesh structure to reduce the local error to a minimum. Should h
(mesh size) be decreased or should p (polynomial or spectral
degrees of freedom) be increased? Although some work in

optimization between the h- and p- processes has been reported
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[13¥i5], the subject of optimization appears to be an open
question. Thus, our approach in this study is to refine the mesh
until shock waves are adequately computed and then resort to the
p- version with higher order Legendre polynomials in order to
resolve tﬁrbulence microscales. Toward this end, the error
indicator e may be defined in terms of density for shock waves

and velocity for turbulence. Some of the options are given as

follows:
max
O =nh Q, e/ |0 (13a)

where h is the mesh parameter and various Sobolev space (H")

seminorms are defined as

el [—P'ax = "“] o el ([nga—&%;d“]’ (14a)
vy vy _Pv, v, N3
Vilan ( ax ax ] o Vil '( ax,axk axjax,do] (14Db)

The choice among these options depends on various physical
aspects of the given problem, whether local errors are dominated
by density, velocity components, their gradients, or second
derivatives. For the purpose of the examples dealt with in
Section 5, we utilize Eg. (13a) and Eqg. (13b) for the h-
adaptivity associated with shock waves and the p- adaptiVity
associated with turbulent boundary layers, respectively.

Direct numerical simulations for turbulent flows are

achieved by higher spectral orders using Legendre polynomials
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[10-12]. The spectral element interpolation functions for the
corner nodes, side modes, .and interior modes in a two-dimensional
4-node isoparametric element are as follows (see Fig. la):

Four corner node functions:

o =-%(i—€)(l'ﬂ) , &9 =-%(1+E)(1—ﬂ)
(15)
O = 2(1+8) (1+m) ,  @{F = 2(1-8) (1+m) |
Side mode functions:
N®® = 4(p-1), i=2,...p
o = Lame, () . 8 = 26, )
(16)
ol - %(1+‘1)Gm(5) , @l - %(I-E)Gm(ﬂ)
Interior mode functions (bubble functions):
2 (17)
o2 =6,(8)6,(n) , mn=2,...p, mM+ns<p

where N and N denote, respectively, the total number of

interpolation functions available for sides n (1,2,3,4) and the
interior, p is the highest Legendre polynomial order chosen, and
the Legendre interpolation functions, G, (§) and G, (n), are

defined in terms of the Legendre polynomials p;(§) as follows:

1
G = = (@ -9
' (E) —— (0,(8)-0,,(8)) (18)

The same procedure applies to the n-direction.

Notice that the corner node interpolation functions are
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linéér whereas the side modes and interior modes depend on the
order p of Legendre polynomials chosen. For a three-dimensional
domain tensor products in the third direction { for a hexahedral
element can be constructed similarly as in the two-dimensional
case, but with surface mode functions as well as edge and
interior mode functions.

As a consequence of these Legendre polynomials representing
the side and interior mode functions, any variable U may be

modeled as

v=0,0 + 00, + 020 (19)
where ¢ ‘™ and ¢_ ‘" denote the side and interior mode functions,
respectively, and 0O and 0 are spectral coefficients to be

calculated from additional integrals,

Ltb,f,s”’x(m da =0 (20a)

fncb,ﬁ,ﬁ’n(m dQ = 0 (20b)

Here the standard static condensation may be used to eliminate ﬂh
and Qm. Thus the final form of the finite element equations is

modified to

(Aup8 prs + Brprs) AUps = Hir — Wer + N + N (21)
where wuf acts as a source term reflecting the Legendre
polynomial side and interior mode functions obtained from the

static condensation of (12), (20a), and (20b). In this way,
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variébles are calculated only at the corner nodes, regardless of
high order Legendre polynomial approximations.

our objective here is to satisfactorily simulate turbulent
microscales within an element. All side mode and interior mode
interpolaﬁion functions vanish at the corner nodes but exhibit
high frequency variations according to the order of Legendre
polypomials along the sides and interior domain. It is intended
that such Legendre polynomial microscales be capable of
simulating the physical microscales of turbulence such as those
of Kolmogorov and Taylor (Fig. 1b). Microscales involved in
viscous sublayer, buffer zone, and turbulent core are of the
order of 10°' mm whereas characteristic lengths of domain of
interest may be over meters or kilometers. Thus the h-adaptivity
alone is severely limited and naturally we seek a remedy of this
situation in the h-p adaptivity utilizing the highest spectral
orders required for accuracy.

Transition elements involve irregular nodes in the h-
refinement process -- node c for element T-1 and nodes c and d
_for element T-2 as shown in Fig. lc. To assure linear
approximations for both unrefined and refined elements, we must
eliminate irregular nodes involved in the unrefined elements.
This can be done simply by assuming [13]

1 1

Uc= 3(UQ+UR)I Ud'_' —Z-(UR+US) (22)

This will lead to

Ty = IV TN (N,M=1,2,3,4) (23a)
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Ut = 9P IV ul™  (NyM=1,2,3,4) (23b)

(T-1. . ‘1 :
where H, " and H,? denote the auxiliary matrices for T-1 and

T-2 elements, respectively,

(1 5o 1] (1 0 0 0]
2 2 1 1
H$-1)= 0 100 H(r—z)_ 3—2—0 ° (24)
0010J W™ "lo 010/
0 00 1 1 1
- = 0 0 =
| 2 2

and U,™" and U,7? are the unknown nodﬁl vectors in terms of the
global nodes Q, R, and S with the irregqular nodes c and d
eliminated.

The advantage of Legendre polynomials is an ease in dealing
with side and interior modes which do not require specification
of nodes physically located. This is especially beneficial for
side modes in establishing boundary continuities. Continuity of
variables and gradients along the inter-element boundaries is to
be dictated by the higher order polynomials between the two

adjacent elements.

Similar extensions can be made for three-dimentional geome-
tries. The three-dimensional Legendre polynomial spectral element
ésﬁfiguration is..shown in Fig. 1d. It is seen that side modes
and the interior mode of a 2-D element become edge modes and
face modes for a 3-D element, respectively. These modes are in

addition to the 3-D interior mode.

IV. DNS PERTURBATION VARIABLES
It is well known that DNS is expected to provide information

in turbulence microscale levels at the expense of excessive
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refihements of domain discretization [6]. The purpose of the
present study is, instead, to ‘avoid such refinements by means of
implementing high spectral Legendre polynomial orders. The
Navier-Stokes solver as introduced here allows unsteady time
accurate éﬁlutions from which perturbation variables (f') can be
calculated as the difference between the Navier-Stokes solution
(f) and its time average } [20, 21], .

fl=f-f (25)

This computation can be conducted throughout the Navier-Stokes
integration time steps or upon arrival at gquasi-steady state.
Strictly speaking, in shock wave/turbulent boundary layer
interactions a complete steady state is never realized as
unsteady eddy motions persist indefinitely, although background
flowfields may become steady. This is referred to as the quasi-
steady state. The time average of Navier-Stokes solution is
performed using the Gaussian quadrature. In this process
complicated physical phenomena such as homogeneous and
inhomogeneous, isotropic and anisotropic, and nonstationary
nature of perturbation flowfields for a compression corner with
shock wave turbulent boundary layer interactions can be resolved.

Furthermore, all perturbation variables as calculated from
(25) can be transformed via fast Fourier transform to generate
power spectral density vs fréquency domain. In section 6 we
examine various perturbation variables as well as background
flowfield data. As a result of this study, more details of shock

wave turbulent boundary layer interactions such as variations of
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turbulent kinetic energy vs shock strength, laminar-turbulence
transition instability, relaminarization, effects of dilatation,
etc., can be rigorously examined in comparison with the previous
investigations [6, 22-23]. Some limited results and discussion

of these subjects are presented in Section 5.

V. CALCULATIONS OF FLOWFIELD-DEPENDENT IMPLICITNESS
PARAMETERS AND STABILITY ANALYSIS

The success of hp version spectral element method described
above depends on accurate calculations of flowfield-dependent
implicitness parameters. With appropriate choices of nodal
points in a one-dimensional case it was demonstrated in Section 2
that the terms associated with the convection-implicitness
parameters (s,, s,) in the MEI formulation are analogous to the
the FDM-TVD methods. To further examine both convection and

diffusion implicitness parameters we propose the following

criteria:
min(r,1) r>a ‘
Sy, S, = (0] r<a (25)
1 Myin =0
with
AM
r= (26)
Miin

where AM is the difference between the maximum and minimum Mach

number (AM = M

max — Main) within a finite element, and o is a user-

specified small number (a ~ 0.01).
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min(s,1) s> P

S31 8, = 0 s<P (27)
1 Re in) =0
with
ARe
s=—=22_, Pp=0.01 (28)
Re(min)

where ARe is the difference between the maximum and minimum

Reynolds number (ARe. .., - AR ) within a finite element and B

€ (mim
is a user-specified small number (8 « 0.01). For reacting flows,
the diffusion parameters s; and s, are also calculated from
Damkdhler numbers using the similar criteria as in (27) and (28).
Depending upon the length and time scales involved in the actual

' flowfield, the diffusion implicitness parameters are governed by
either turbulence or finite rate chemistry, whichever are larger
if chemical reactions are included.

As a result of both convection and diffusion implicitness
parameters based on the flowfield variables, it is possible to

derive an expression for the amplification factor for (12) in one

dimension in the form

_s,) C? -5 € -3(1-8)] = - - i
e 1+[(1 8,) C3+2(1-3,) Ro 3(1 s,)] a2 (cosé-1) + I(s;-1)Csind

(29)

25, 33,C?

1+i-85,C% -
[ 2 Re ' "Re?

] (cos$-1) + Is;Csind

with

_ aAt _ah  pagp-®mR

For illustration, the amplification factors for various

modes m versus courant number C are shown in Fig. 2. It is
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evident that stability conditions are much more favorable than those given in [32] where
only the convection implicitness parameters were considered. It is also shown that as the
Reynolds number decreases stability increases for intermediate modes (m=0.5) with an

increase of diffusion implicitness parameters s3 and s4.
VL. APPLICATIONS

In the 1993 progress report, the validity of the use of Legendre polynomial
spectral elements in conjunction with adaptive mesh refinements was demonstrated using
two example problems (flat plate and compression corner). Fourth order Legendre
polynomials were used for direct numerical simulation of these problems. In that report
the results of turbulent statistics were not presented.

In Fig.3, the perturbution velocity components corresponding to the flate plate
shock wave turbulent boundary interactions, page 37, the 1993 progress report are shown.
These variables are in a random unsteady state within the boundary layer (solid line) and
more or less steady state outside the boundary layer (dashed line). Here, one unit of
nondimensional time is equivalent to 0.96 ms, and thus the unsteady motion frequencies
vary from approximately 62 to 135 kHz for the streamwise component and 31 to 94 kHz
for the spanwise component.

Fig.4 shows perturbation normal and shear stress components, indicating that
shock wave turbulent boundary layer interactions contribute to dilation (compressibility
effect) as evidenced by greater normal stresses than sheal stresses.

Also of interest, as shown in Fig.5, is the sharp rise of turbulent kinetic energy in
the boundary layer, away from the wall but slightly below the boundary layer, where
shock-turbulence interactions are maximum, indicating the amplification of turbulent

kinetic energy.




20

The major achievement of the past year is the completion of computer algorithm
for the three-dimensional data structure. To check out this algorithm a three-dimensional
sharp-leading-edged fin has been iﬁvestigated for swept shock wave turbulent boundary
layer interactions. Fig.6a shows the physical domain for a 3-D sharp fin ( a=20 ) and a
general flowfield structure (Fig.6b,c) [33]. The inlet boundary conditions are the same as
used by Knight et al. [34] and the corresponding flowfield structure. Here the free stream
Mach number and temperature are M,=2.93 and T,=92.39 K, corresponding to the
chamber pressure and temperature of 680 kPa and 251 K, respectively, with the Reynolds
number being 7x 108 /m. The boundary layer thickness &, at the apex of the fin is 1.4cm,
yielding a Reynolds number Re;, = 9.8x10°. In order to match the boundary conditions as
used for the experiments [34] the flowfied behind the fin is calculated as a flat plate
boundary layer such that the computed boundary layer thickness &, is set equal to the
experimental value of 1.4 cm. On the solid surfaces no slip and adiabatic wall boundary
conditions are applied. On the upper, lateral, and at downstream exit boundaries the flow
variables are set free. Adaptively spaced grid points are 33, 41, and 31 in the streamwise,
spanwise, and vertical directions, respectively. No attempt is made for further adaptive
refinements for the geometry shown in Fig.6d at this time. |

Fig.7 shows the background flowfield based on the geometric configurations and
boundary conditions described in Fig.6, as observed from the front (x-z and y-z faces). As
such, no details of the hidden portion are shown. Subject to the detailed examination in
comparison with the experimental data to be given in Fig.8, we are only able to detect a
general qualitative trend of the flowfield in Fig.7. It is to be noticed that the trend is in
reasonable agreement with the results vof Narayanswami et al. [35], with density and
pressure increasing drastically along the shock waves, the temperature rise being

distributed along the flat plate, and Mach number sharply decreasing through the shock

waves toward the flat-plate boundary.
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Fig.8 shows comparisons of yaw angles at various locations : (a) x=7.549 cm,
y=-6.1087cm and (b) x=8.827cm, y=-7.3787cm with the experimental and other
computational data [34]. As poinfed out in [34] uncertainties in the experimental data
(portion of broken line) obscure the comparison not only with the other computational
data (turbulence models) but also with the pressent study. Further investigation is
required, however, to determine the cause of these deviations.

Vorticity variations at different planes are shown in Figs. 9 through 11. The
contours of vorticity component in the streamwise planes (y-z planes) in the x-direction
with each plane identified as a,b,c,d,e are shown in Fig.9. The corresponding velocity
vectors are plotted on the right-hand-side. Clearly, the vortex stretching occurs toward
downstream with the evidence of separation shocks, slip lines, and vortex centers close to
the wall. These physical phenomena become more significant toward downstream in
agreement with the skematics shown in Figs.6b and c. |

Fig.10 shows the contours of vorticity component in the spanwise vertical planes
(x-z planes) in the y-direction, with each plane idendified as a,b,c,d. The vortex stretching
occurs again toward downstream and moving upward along the shock. The growth of
vorticity is concentrated within the boundary layer close to the wall.

In Fig.11 the spanwise horizontal plane vorticity contours are presented at various
locations (a : 25,,b : &,, ¢ : 0.55,) where &, is the boundary layer thickness. It is seen
that vorticity increases toward the wall with its intensity increasing toward downstream as
expected.

VII. CONCLUSIONS

Based on the preliminary results obtained for the direct numerical simulation using
the MEI Taylor-Galerkin Legendre polynomial spectral element method, it appears that
our original goal for the initial attempt has been successfully achieved. The main concern
was to make certain that the irregular node connectivity of the h-p process can numerically

be implemented. Elaborate data structure schemes which have been developed are the
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major factor for these achievements. In addition, the preliminary results for three-
dimensional computations of sharp fin shock wave turbulent boundary layer interactions
are satisfactory. ‘

There are still many more tasks remaining unexplored. They include: (1)
verification of 3-D fluctuations, unsteadiness, and turbulent micro-scales as related to
turbulent Mach number, turbulent Prandtl number, and turbulent Reynolds number, (2)
characterization of compressibility effects and relaminarization, (3) energy spectrum data
versus frequency domain and complete 3-D turbulent statistics, (4) laminar-turbulence
transition instability, (5) reliable optimal control of h-p interactions with Legendre
polynomials, (6) temporal and spatial dependency of implicitness parameters, among
others. They constitute challenging future tasks in years to come. In summary, it is
concluded that the direct numerical simulation for turbulent compressible flows with the

Legendre polynomial spectral element method appears to be promising.




Appendix A

ANALOGY BETWEEN MEI SCHEME AND FDM-TVD

For simplicity, consider a one-dimensiocnal Euler equation

du du

-5E+a-&=0 (Al)

The MEI equation for (Al) with derivatives written in terms of

nodes u,, u,,, and u,., becomes

Auft S,8,, a- . s,aCAx
- - Auft - ney 2 el _ nel nsL
— —(Auf Aufly) + ETVER {Auf 2auf’y + Aufy)
- Llyen _ ca CAX (cn _ n n
il £52) + A? (€2 - 2£, + £i%) (a2)

where C is the Courant number, C = aAt/Ax.

The FDM-TVD equation for (Al) may be written as

du ar 1 g-
dti = - Ax{(ui- u,) * 3 Ti_% (uy- uy,)

of

T oa(uy,- ui-z)]
)

1

a-[ 1

with

a” = max (0,a) = 1/2 (a + |a|)

min (0,a)

a 172 (a - |al)

Introducing an implicitness parameter s for the time derivative

on RHS of (A3) in the form

u, = ul + sAul* (A4)

23
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Substituting (A4) into (A3) and assuming that

for simplicity, we obtain

Auf‘i = - sa (Aunﬁ._ A n¢1) - ST&AX(Aunﬂ._ ZAU.-’M'*' A n+l
—ar ° “zagcud” auld) - SEEHAu- 280l dul)
- (8- £R) - %‘s(ff - 2£8, + £2,) (AS5)

Comparing (A2) and (A4) reveals that
T' C = -w' Sz= S = 251.

It is clear that the MEI formulation and FDM-TVD scheme are
analogous:; in fact, they are identical under the assumptions made
above. The implicitness parameters s, and s, in the MEI scheme
play the role of TVD limiters, Y. However, the implicitness
parameters s, and s,, beyond the concept of TVD scheme, are
expected tc govern complex physical phenomena'such as turbulent
boundary layer interactions with shock waves, finite rate
chemistry, widely disparate length and time scales,
compressibility effects in high Mach number flows, etc.
Undoubtedly, all implicitness parameters are flowfield dependent
with s, and s, associated with Mach numbers, s, and s, with
Reynolds numbers and Damkohler numbers, between upstream and

downstream nodes within finite elements.
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plate, page 37, 1993 progress report.
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Fig. 4 Reynolds stree components for the flat plate,
page 37, 1993 progress report.
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a
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C

Fig. 10 Spanwise vertical plane (x-z plane) vorticity contours
at various locations. (t=0.3965ms, 0< 2o 5)
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a  Max.- 6.86x10° Min.- -6.61x%10™

b Mox.= 7.30x10° Min.= -7.57%10"
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